Incomplete orthogonal families and a related question on orthogonal matrices.
نویسندگان
چکیده
منابع مشابه
Orthogonal, Antiorthogonal and Self-Orthogonal Matrices and their Codes
Orthogonal matrices over arbitrary elds are de ned together with their non-square analogs, which are termed row-orthogonal matrices. Antiorthogonal and self-orthogonal square matrices are introduced together with their non-square analogs. The relationships of these matrices to such codes as self-dual codes and linear codes with complementary duals are given. These relationships are used to obta...
متن کاملDisentangling Two Orthogonal Matrices
Motivated by a certain molecular reconstruction methodology in cryo-electron microscopy, we consider the problem of solving a linear system with two unknown orthogonal matrices, which is a generalization of the well-known orthogonal Procrustes problem. We propose an algorithm based on a semi-definite programming (SDP) relaxation, and give a theoretical guarantee for its performance. Both theore...
متن کاملDisentangling orthogonal matrices.
Motivated by a certain molecular reconstruction methodology in cryo-electron microscopy, we consider the problem of solving a linear system with two unknown orthogonal matrices, which is a generalization of the well-known orthogonal Procrustes problem. We propose an algorithm based on a semi-definite programming (SDP) relaxation, and give a theoretical guarantee for its performance. Both theore...
متن کاملNumerical study on incomplete orthogonal factorization preconditioners
We design, analyse and test a class of incomplete orthogonal factorization preconditioners constructed from Givens rotations, incorporating some dropping strategies and updating tricks, for the solution of large sparse systems of linear equations. Comprehensive accounts about how the preconditioners are coded, what storage is required and how the computation is executed for a given accuracy are...
متن کاملCIMGS: An Incomplete Orthogonal FactorizationPreconditioner
A new preconditioner for symmetric positive definite systems is proposed, analyzed, and tested. The preconditioner, compressed incomplete modified Gram–Schmidt (CIMGS), is based on an incomplete orthogonal factorization. CIMGS is robust both theoretically and empirically, existing (in exact arithmetic) for any full rank matrix. Numerically it is more robust than an incomplete Cholesky factoriza...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Michigan Mathematical Journal
سال: 1964
ISSN: 0026-2285
DOI: 10.1307/mmj/1028999030